23 research outputs found

    Real-time trajectory optimisation models for next generation air traffic management systems

    Get PDF
    This paper presents models and algorithms for real-time 4-Dimensional Flight Trajectory (4DT) operations in next generation Communications, Navigation, Surveillance/Air Traffic Management (CNS/ATM) systems. In particular, the models are employed for multi-objective optimisation of 4DT intents in ground-based 4DT Planning, Negotiation and Validation (4-PNV) systems and in airborne Next Generation Flight Management Systems (NG-FMS). The assumed timeframe convention for offline and online air traffic operations is introduced and discussed. The adopted formulation of the multi-objective 4DT optimisation problem includes a number of environmental objectives and operational constraints. In particular, the paper describes a real-time multi-objective optimisation algorithm and the generalised expression of the cost function adopted for penalties associated with specific airspace volumes, accounting for weather models, condensation trails models and noise models

    Exploiting wind to optimize flight paths for greener commercial flight operations

    Get PDF
    Trajectory Based Operations (TBO) has been identified by ICAO as a key aviation evolution with significant developments in Next Gen Flight Management Systems (FMS) to communicate with ground based 4DT Air Traffic Management (ATM) system of the future. The Next generation ATM and FMS systems will include the capability of generating 4D trajectories to increase aircraft efficiency and reduce emissions. Natural resources, such as the wind, can be exploited to reduce the aircraft's fuel usage and travel time while improving its operational efficiency. These benefits are realized if trajectories are formulated to maximise the time in tailwind scenarios. The results presented here quantify the fuel and time savings of a typical Australasian route using a simulated wind field as an input to the optimization problem. Minimum fuel burn and emissions are achieved by minimising flight time at constant cruise speed. The attainable savings appeal to aircraft operators as they reduce operational cost. Optimization algorithms to formulate efficient flight trajectories are hence an essential tool in reducing aviation's carbon footprint. Future research will focus on the implementation of 4DT operations and associated logistics. Simulations of common commercial and international flight routes from departure to destination using 4DT intent negotiation and validation routines will allow for an accurate evaluation of the potential savings in fuel and reduction in emissions

    Next generation flight management system for real-time trajectory based operations

    Get PDF
    This paper presents the concept of operations, architecture and trajectory optimisation algorithms of a Next Generation Flight Management System (NG-FMS). The NG-FMS is developed for Four Dimensional (4D) Intent Based Operations (IBO) in the next generation Communications, Navigation, Surveillance and Air Traffic Management system (CNS+A) context. The NG-FMS, primarily responsible for the aircraft navigation and guidance task, acts as a key enabler for achieving higher level of operational efficiency and mitigating environmental impacts both in manned and unmanned aircraft applications. The NG-FMS is interoperable with the future ground based 4DT Planning, Negotiation and Validation (4-PNV) systems, enabling automated Trajectory/Intent Based Operations (TBO/IBO). After the NG-FMS architecture is presented, the key mathematical models describing the trajectory generation and optimisation modes are introduced. A detailed error analysis is performed and the uncertainties affecting the nominal trajectories are studied to obtain the total NG-FMS error budgets. These are compared with the Required Navigation Performance (RNP) values for the various operational flight tasks considered

    CNS+A capabilities for the integration of unmanned aircraft in controlled airspace

    Get PDF
    In this paper, the system requirements for the integration of Remotely Piloted Aircraft Systems (RPAS) in controlled airspace regions are discussed. The specificities in terms of Air Traffic Management (ATM) level of service, jurisdiction for deconfliction duties and prevalent traffic characteristics are analysed to support the identification of operational and equipage requirements for RPAS developers. Communication, Navigation, Surveillance, ATM and Avionics (CNS+A) equipment play an essential role in airspace regions characteried by high levels of Air Traffic Services (ATS) and a higher probability of traffic conflicts. A denser route structure and a more frequent occurrence of traffic conflicts mandate high CNS performance, as the deconfliction by ATM crucially relies on accurate and reliable CNS information. Notwithstanding, the reduced jurisdiction of aircraft in deconfliction duties also offers an opportunity to RPAS developers, as it relieves the requirements for on-board expert processing

    Automated ATM system enabling 4DT-based operations

    Get PDF
    As part of the current initiatives aimed at enhancing safety, efficiency and environmental sustainability of aviation, a significant improvement in the efficiency of aircraft operations is currently pursued. Innovative Communication, Navigation, Surveillance and Air Traffic Management (CNS/ATM) technologies and operational concepts are being developed to achieve the ambitious goals for efficiency and environmental sustainability set by national and international aviation organizations. These technological and operational innovations will be ultimately enabled by the introduction of novel CNS/ATM and Avionics (CNS+A) systems, featuring higher levels of automation. A core feature of such systems consists in the real-time multi-objective optimization of flight trajectories, incorporating all the operational, economic and environmental aspects of the aircraft mission. This article describes the conceptual design of an innovative ground-based Air Traffic Management (ATM) system featuring automated 4-Dimensional Trajectory (4DT) functionalities. The 4DT planning capability is based on the multi-objective optimization of 4DT intents. After summarizing the concept of operations, the top-level system architecture and the key 4DT optimization modules, we discuss the segmentation algorithm to obtain flyable and concisely described 4DT. Simulation case studies in representative scenarios show that the adopted algorithms generate solutions consistently within the timeframe of online tactical rerouting tasks, meeting the set design requirements

    Novel ATM and avionic systems for environmentally sustainable aviation

    Get PDF
    Large-scale air transport modernisation initiatives including the Single European Sky Air Traffic Management Research (SESAR), Next Generation Air Transportation System (NextGen) and Clean Sky Joint Technology Initiative for Aeronautics and Air Transport aim to improve the operational efficiency, safety and environmental sustainability of aviation. Scientific advances in Air Transport Management (ATM) and avionic systems are required to achieve the ambitious goals set by national and international aviation organisations. This paper presents the recent advances in ATM and avionic system concepts, integrated architectures and trajectory generation algorithms, to be adopted in Next Generation Avionics Flight Management Systems (NG-FMS) and ground-based 4-Dimensional Trajectory Planning, Negotiation and Validation (4-PNV) systems. Current research efforts are focussed on the development of NG-FMS and 4-PNV systems for Four Dimensional (4D) Trajectory/Intent Based Operations (TBO/IBO), enabling automated negotiation and validation of aircraft intents and thus alleviating the workload of operators. After describing the NG-FMS/4PNV concept of operations, the overall system architecture and the key mathematical models describing the 4DT optimisation algorithms are introduced. Simulation case studies utilising realistic operational scenarios highlight the generation and optimisation of a family of 4DT intents by the NG-FMS corresponding to a set of performance weightings agreed between Air Navigation Service Providers (ANSP) and Airline Operation Centres (AOC). The savings on time, fuel burn and gaseous emissions (CO2 and NOx) associated with the globally optimal 4DT intents are presented. The developed optimisation and negotiation/validation loops meet the timeframe requirements of typical online tactical routing/rerouting tasks

    Decreased severity of disease during the first global Omicron variant COVID-19 outbreak in a large hospital in Tshwane, South Africa

    Get PDF
    INTRODUCTION : The coronavirus disease 2019 (COVID-19) first reported in Wuhan, China in December 2019 is a global pandemic that is threatening the health and wellbeing of people worldwide. To date there have been more than 274 million reported cases and 5.3 million deaths. The Omicron variant first documented in the City of Tshwane, Gauteng Province, South Africa on 9 November 2021 led to exponen- tial increases in cases and a sharp rise in hospital admissions. The clinical profile of patients admitted at a large hospital in Tshwane is compared with previous waves. METHODS : 466 hospital COVID-19 admissions since 14 November 2021 were compared to 3962 admis- sions since 4 May 2020, prior to the Omicron outbreak. Ninety-eight patient records at peak bed occu- pancy during the outbreak were reviewed for primary indication for admission, clinical severity, oxygen supplementation level, vaccination and prior COVID-19 infection. Provincial and city-wide daily cases and reported deaths, hospital admissions and excess deaths data were sourced from the National Institute for Communicable Diseases, the National Department of Health and the South African Medical Research Council. RESULTS : For the Omicron and previous waves, deaths and ICU admissions were 4.5% vs 21.3% (p < 0.0 0 0 01), and 1% vs 4.3% (p < 0.0 0 0 01) respectively; length of stay was 4.0 days vs 8.8 days; and mean age was 39 years vs 49,8 years. Admissions in the Omicron wave peaked and declined rapidly with peak bed occupancy at 51% of the highest previous peak during the Delta wave. Sixty two (63%) patients in COVID-19 wards had incidental COVID-19 following a positive SARS-CoV-2 PCR test . Only one third (36) had COVID-19 pneumonia, of which 72% had mild to moderate disease. The remaining 28% required high care or ICU admission. Fewer than half (45%) of patients in COVID-19 wards required oxygen supplementation compared to 99.5% in the first wave. The death rate in the face of an exponential increase in cases during the Omicron wave at the city and provincial levels shows a decoupling of cases and deaths compared to previous waves, corroborating the clinical findings of decreased severity of disease seen in patients admitted to the Steve Biko Academic Hospital. CONCLUSION : There was decreased severity of COVID-19 disease in the Omicron-driven fourth wave in the City of Tshwane, its first global epicentre.The South African Medical Research Council.http://www.elsevier.com/locate/ijidam2023Critical CareInternal MedicineObstetrics and GynaecologyPaediatrics and Child HealthSchool of Health Systems and Public Health (SHSPH

    Machine Learning And Cognitive Ergonomics In Air Traffic Management: Recent Developments And Considerations For Certification

    No full text
    Resurgent interest in artificial intelligence (AI) techniques focused research attention on their application in aviation systems including air traffic management (ATM), air traffic flow management (ATFM), and unmanned aerial systems traffic management (UTM). By considering a novel cognitive human-machine interface (HMI), configured via machine learning, we examined the requirements for such techniques to be deployed operationally in an ATM system, exploring aspects of vendor verification, regulatory certification, and end-user acceptance. We conclude that research into related fields such as explainable AI (XAI) and computer-aided verification needs to keep pace with applied AI research in order to close the research gaps that could hinder operational deployment. Furthermore, we postulate that the increasing levels of automation and autonomy introduced by AI techniques will eventually subject ATM systems to certification requirements, and we propose a means by which ground-based ATM systems can be accommodated into the existing certification framework for aviation systems

    Minimizing the cost of weather cells and persistent contrail formation region avoidance using multi-objective trajectory optimization in air traffic management

    No full text
    Exhaust heat recovery systems are used to make use of otherwise wasted heat from a car engine. The unique system design described herein utilises thermoelectric generators (TEGs) and heat pipes with its key advantage being it is a passive solid state design. The use of these components creates a few design This paper gives the concepts and mathematically models required for the development of the Multi Objective Trajectory Optimization (MOTO) functionalities to be implemented into the next generation of ATM system. MOTO algorithms are introduced whereby data from various sources are utilized to optimize flight paths for various user defined objectives. The algorithms require digital resources of weather, aircraft data, metrological maps and air traffic. These will be used in conjunction with various mathematical models to compute trajectories that minimize various objectives such as fuel, emissions and operational cost. The automated 4D trajectory computation algorithms are restricted to single flight level to not violate the current layered vertical air route structure for the cruise phase of flight. As such the complexity of the generated trajectories reduces to 2 dimensions plus time (2D+T), which are adequately represented in the radar display, and this improves the ATC Operator&#039;s familiarity in the tactical trajectory management and deconfliction, as control over vertical separation is maintained. This also permits the ATCO to amend the flight level of an optimized trajectory in the traditional manner if necessary. The constant flight level limitation will theoretically produce a sub-optimal flight path however the computed trajectory will remain more efficient than a straight line as the atmospheric winds are exploited to maximize flight speed while reducing fuel burn and emissions

    Real-Time UAS Guidance for Continuous Curved GNSS Approaches

    No full text
    This paper presents new efficient guidance algorithms allowing Unmanned Aircraft Systems (UAS) to avoid a variety of Global Navigation Satellite System (GNSS) continuity and integrity performance threats detected by an Aircraft Based Augmentation System (ABAS). In particular, the UAS guidance problem is formulated as an optimal control-based Multi-Objective Trajectory Optimization (MOTO) problem subject to suitable dynamic and geometric constraints. Direct transcription methods of the global orthogonal collocation (pseudospectral) family are exploited for the solution of the MOTO problem, generating optimal trajectories for curved GNSS approaches in real-time. Three degrees-of-freedom aircraft dynamics models and suitable GNSS satellite visibility models based on Global Positioning System (GPS) constellation ephemeris data are utilised in the MOTO solution algorithm. The performance of the proposed MOTO algorithm is evaluated in representative simulation case studies adopting the JAVELIN UAS as the reference platform. The paper focusses on descent and initial curved GNSS approach phases in a Terminal Maneuvering Area (TMA) scenario, where multiple manned/unmanned aircraft converge on the same short and curved final GNSS approach leg. The results show that the adoption of MOTO based on pseudospectral methods allows an efficient exploitation of ABAS model-predictive augmentation features in online GNSS guidance tasks, supporting the calculation of suitable arrival trajectories in 7 to 16 s using a normal PC
    corecore